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Abstract 1 Introduction

We use neural networks to perform retrievals

of temperature and water fractions from sim-

ulated clear air radiances for the Atmospheric

Infared Sounder (AIRS). Neural networks al-

low us to make effective use of the large AIRS

channel set, and give good performance with

noisy input. We retrieve surface temperature,

air temperature at 64 distinct pressure levels,

and water fractions at 50 distinct pressure lev-

els. Using 728 temperature and surface sensi-

tive channels, the RMS error for temperature

retrievals with 0.2K input noise is 1.2K. Us-

ing 586 water and temperature sensitive chan-

nels, the mean error with 0.2K input noise is

16%. Our implementation of backpropagation

training for neural networks on the 16,000-

processor MasPar MP-1 runs at a rate of 90

million weight updates per second, and al-

lows us to train large networks in a reasonable

amount of time. Once trained, the network

can be used to perform retrievals quickly on a

workstation of moderate power.

The next generation of NASA earth viewing

satellites on Earth Observing System (EOS)

platforms will produce a deluge of raw data

that must be processed into products that

describe the state of the earth and its at-

mosphere over time. Satellite instruments

that probe the atmosphere measure radiances

over a number of channels, and this informa-

tion must be "inverted" to obtain information

about the atmospheric state, such as the tem-

perature, humidity, and composition.

The Atmospheric Infrared Sounder (AIRS)

[3], currently under development, should pro-

vide both higher accuracy and vertical reso-

lution than the present operational sounders

(HIRS/MSU) [10], and lead to higher fore-

casting skill and a long term accurate mea-

sure of climate change. The AIRS instru-

ment will contain upwards of 4000 channels

at a much higher spectral resolution than the

currently operational HIRS instrument, which
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has 20 channels. The optimum useof these
data for atmospheric sounding in a cost ef-
fective way may require completelynew tech-
niques,asexisting methodsfor current instru-
ments may not be transferable in a straight-
forward manner. Traditional retrieval (or in-
version) techniquesarecomputationally inten-
sive, especiallynon-linear techniquesthat re-
quire severaliterative calculationsof the chan-
nel radiances. It is estimated that the AIRS
will require one of the most computationally
intensivedata systemson EOS.

To addressthesenew computational chal-
lenges,we have implemented a backpropaga-
tion training algorithm on the Maspar MP-1
at Goddard SpaceFlight Centerto train neu-
ral networksto performatmosphericretrievals
of temperature and water profiles from simu-
lated clear air radiancesfor the AIRS instru-
ment. [The problem of cloudy atmospheresis
a topic of future work not treatedhere.] These
neural networksallow us to makeeffectiveuse
of the large AIRS channel set, give good per-
formancewith noisy input data, and allow for
very fastprocessingevenwith very largenum-
bersof channels.

We have found that the backpropagation
code maps very well to the Maspar, and we
haveobtained network training ratesof 93mil-
lion connectionupdatesper second(CUPS) in
singleprecision [1]. Oncesucha network has
beentrained on the Maspar, it can be down-
loadedto a workstation wherethe time to ob-
tain retrievalsis the time to perform threema-
trix multiplies - of order lessthan 0.5secwith
a thousand input channels. (On the Maspar
the retrieval time is at leastan order of mag-
nitude faster).

The accuracy of the results obtained with
our neural networks are quite competitive

with other retrieval methods. Using 728tem-
perature and surfacesensitive channels,and
with 0.2K std noiseadded to the input bright-
nesstemperatures,the neural network hasan
overallRMS error retrieving 64pressurelevels
of 1.22K. Using 586 water, surface,and tem-
perature sensitivechannels,and with 0.2K std
noiseadded,the neural network hasan overall
error retrieving 50pressurelevelsof 16%[2].

In order to better understand retrieval per-
formance,weperform a sensitivity analysisof
trained networks. This analysisis usefulin se-
lectingwhat setsof channelsare to be used,in
a processof iterative refinement, and in many
casesshowsa closecorrespondenceto plots of
weightingfunctions (discussedin the next sec-
tion).

In the sequelwe describe the atmospheric
retrieval problem, show how we use neural
networks to solve the problem, describe the
datasets used in training the networks, and
presentanumberof representativeresults. We
also describethe method of sensitivity analy-
sis for evaluatingthe effectivenessof input sets
to a neural network.

2 Atmospheric Retrievals

The problem of atmospheric retrievals [7], [51

(the "inverse problem") is to take as input

the radiances at a specified set of frequency

channels measured by a sensor on a satellite

above the top of the atmosphere and compute

the temperature or water profiles of the atmo-

sphere (as a function of pressure) that gave
rise to those radiances.

Associated with the inverse problem is the

"forward problem" of computing the radiances
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at the top of the atmosphere generated by

layers of molecules in local thermal equilib-

rium from the surface up through the atmo-

spheric column in the sensor's field of view.

(We refer to this column as a temperature pro-

file.) Assuming a plane parallel atmosphere

in local thermodynamic equilibrium and neg-

ligible scattering, and no instrument function
one can write the monochromatic radiance at

nadir at the top of the atmosphere as

RIJ e,,B.(T.)T.(P.,[T(P)])

j_hln/5 pdr.(P,[T(P')])dln B,[T(P)]
+ 1,t,, dln P

where e, is the emissivity of the surface s, and

the contribution of reflected radiation which is

negligible at most frequencies of interest has

not been included. B_,(T) is the Planck func-

tion for emitted radiance of a blackbody at

frequency t, and temperature T,

/]3

B,,(T) = 1.19 z 10 -5
exp [l.439u/T] - 1"

The quantity v,,(P,,[T(P')])is the atmo-

spheric transmittance from the surface at

pressure P_ to the top of the atmosphere at

pressure/5 which is the fraction of photons of

frequency u emitted at the surface/°8 that ar-

rive at the sensor at altitude/5. The quantity

dT,(P,[T(P')]) is the weighting function for the
dlnP

frequency u and when multiplied by dln P de-

scribes the fraction of photons of frequency u

emitted in the layer between pressure P and

P + dP that reach the top of the atmosphere.

Fig. 1 [3] shows a few of the several thou-

sand weighting functions available from the

AIRS instrument and indicates how a weight-

ing function can be associated with a narrow

vertical region of the atmosphere. The no-

tation (P,[T(P')]) as the argument of _ isdlnP

used to stress that it is functional of the pro-

file T(P') between/5 and P and a function of

P.

Present retrieval systems are most eas-

ily classified as being either linear regression

techniques or non-linear iterative techniques.

Both techniques can use varying amounts of

statistics for regularizing their solutions, as

well as varying amounts of the forward prob-

lem radiative transfer. The linear regression

approach is dependent on a very good first

guess in order to be in the linear regime for the

regression. The non-linear iterative method

does not require such a good first guess, but

does require time-consuming forward problem

calculations. In addition, it is not clear if the

non-linear iterative approach can coherently

use all the information in the AIRS channel ra-

diances without numerical problems. It may

also be possible to iterate the linear regres-

sion approach, however this would result in

the need to iteratively calculate the forward

problem for a very large number of channels,

introducing a very heavy computational bur-
den.

3 Neural Networks

We use a three-layer feed-forward neural net-

work, batch trained with a modified back-

propagation algorithm [6], [8] with an adap-

tive learning rate. This network can be repre-

sented as

Y=

F3(WaF2(W2F,(W,X + B,) + B2) + B3),

where each Fi maps matrices to matrices, ele-

ment by element, by applying a transfer func-
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Figure 1: Representative weighting functions for the AIRS instrument. The x axis is a measure

of the weighting function (where I(v) is the radiance) and the y axis is pressure in mb.

tion to each matrix element and the matrices

shown in boldface type are combined by ma-

trix multiplication and addition. The map-

ping F/ is often referred to as a layer, with

the weight matrices representing connections

between layers. We use the hyperbolic tan-

gent as a transfer function in the first two

layers, and a linear function in the third.

The input matrix X is of size (row × col)

nin x ntr._,i,_g and the output Y matrix is of

size no_t x n_T_ini,_g. The Wi are weight ma-

trices of size respectively nl x ni_, n2 x nl,

and no_,, x n2. The Bi are bias matrices of

respective sizes 72 1 X ntrainlng , _'l2 M ntraining ,

and no,_, x ntrai,_i,_g composed of single bias

column vectors of respectively size nl, n2, and

nout replicated ntT_i,_i,_g times to build the bias

matrices. The quantities nin, nl, n_, no,,, and

nt_ini,_j are the number of input units (fre-

quency channels), the number of first layer

hidden units, the number of second layer hid-

den units, the number of output units (pres-

sure levels), and the number of examples in

the training set.

The networks we use for temperature re-

trievals have one input component for each

instrument channel, and one output compo-

nent for each AIRS pressure level. The first

layer has between 90 and 108 transfer func-

tions, the second between 60 and 72 transfer

functions, and the output layer has a linear

function for each pressure level. For water re-

trievals we have used 90 transfer functions in

the first layer and 60 in the second layer.

Back-propagation training is a variation of

gradient descent, in which weight and bias

vectors are incrementally adjusted in an at-

tempt to match the network output with a
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set of training examples. This training set is
a set of pairs, where eachpair is an input to-
gether with the desiredoutput. A singlepre-
sentation of all the training data and corre-
spondingweight and bias adjustment is called
an epoch. Training consistsof a sequenceof
epochs,and typically continuesuntil the sum-
squarederror is acceptableor someresource
limit is encountered. Training is a computa-
tionally intensive processfor non-trivial net-
works. Although training is slow, applying a
trained net is very fast, with theruntime being
dominated by the time for the three matrix-
vector multiplies.

It is convenientin the caseof temperature
retrievals to convert radiancesR_ to bright-

ness temperatures O_ according to the relation

B_(O.) = R_ [9]. The brightness temperature

is the temperature a blackbody would be at to

produce the radiance R,. By doing this the

large dynamic range of radiances is reduced

to a much smaller dynamic range of bright-

ness temperature. Further, each element of

the input and output vector pairs are scaled

to be differences from the mean values over the

training set, and are divided by the standard

deviation of the training set. This "normal-

izes" the inputs and outputs to a useful dy-

namic range for the transfer functions used.

We have developed a backpropagation code

for the 128 x 128 processor MasPar MP-1 at

the Goddard Space Flight Center in mpl (Mas-

par's parallel extension of C), which makes

extensive use of the Maspar linear algebra li-

brary. This code efficiently handles the virtu-

alization needed to map very large networks

of many tens of thousands of weights and bi-

ases across the 16384 processing elements of

the machine. Originally the code was written

completely in double precision (64 bits) but

since the results were found to be highly im-

mune to noise in the data sets, a single preci-

sion version is now being used. Profiling tests

show the code spends 95% of the time per-

forming matrix multiplications, for which the

Maspar routines are highly optimized. We are

observing execution rates of 93 million weight

updates a second [1] on typical datasets.

4 Datasets for Training

Datasets for training and testing are gener-

ated from the set of 1761 TIGR profiles [4]

of temperature and water using the radiative

transfer equation, to obtain corresponding ra-
diances for the entire AIRS channel set. Thus

the physics of the problem is built in by (1) the

judicious selection of a large representative set

of profiles and (2) the radiative transfer equa-

tion that gives the matching radiances. The

TIGR profiles have been interpolated from the

original 40 levels to either 66 TOVS pressure

levels (for earlier experiments) or 64 TOVS

pressure levels (as used in the AIRS science

teams "write test"). The retrieved quantities

are the temperatures and water amounts in

the 64 intervening slabs with an additional el-

ement for the surface temperature, which may

be different from the lowest slab. The surface

emissivity is assumed to be one, for these ex-

periments.

Our general method is to partition a dataset

into training and extrapolation sets. The net

is trained on the training set, and is then

tested with the extrapolation set, both with

and without noise; the noise inputs have a nor-

mal distribution and 0.2K standard deviation.
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5 Results

In this section we present representative re-

sults for several profile and channel sets. In

general, training runs were stopped when the

RMS training error stopped showing signifi-

cant improvement; this occurred after on the

order of 100,000 epochs. Once network pa-

rameters (adaptive learning parameters, sizes

of hidden layers, and initial distributions) are

fixed in a useful range, different sets of random

initial weights typically have a small effect on
final RMS error. When the full set of TIGR

profiles is divided into training and extrapo-

lation sets of approximately equal size (with

representatives from all latitudes in both sets)

exchanging training and extrapolation subsets
also has a small effect. The result for all the

runs discussed are summarized in Table 1.

In run 150, the 880 even numbered TIGR

profiles were used for training and the 881 odd

numbered TIGR profiles were used for test-

ing the network. Input to the net is bright-

ness temperature for 666 AIRS channels, se-

lected for surface and air temperature sen-

sitivity. Output is surface temperature and

air temperature at 66 distinct pressure lev-

els. The network has 108 hyperbolic tangent

transfer functions in the first hidden layer, and

72 hyperbolic tangent transfer functions in the

second hidden layer. After 140,000 epochs,

RMS training error is 1.20K, RMS extrapo-

lation (testing) error is 1.26K, and RMS ex-

trapolation error with 0.2K std noise is 1.44K.

These results are shown in Fig. 2. After

100,000 epochs of further training with noisy

data (0.2K std noise added to the input data),

_ is 1.22K, RMS extrapola-]2_ IS training error

tion error is 1.23K, and RMS extrapolation
error with 0.2K std noise is 1.37K

In the upper plot of Fig. 2, the temperature

retrieval error at the surface and at each of 66

pressure levels is shown. In the lower plot, the

same set of errors is presented as 11 groups of

6 pressure levels (the surface is still distinct,

and is not grouped with any pressures levels).

We do not have a completely satisfactory ex-

planation for the small 'oscillations' in the 66

level plot. This pattern of fine variations ap-

pears across a wide range of training sessions

and channel sets. (Note the similarity between

these small scale variations in the Fig. 2 and

Fig. 3 plots.) One possible explanation is that

these variations correspond to variations in

the numbers of weighting functions available

at different pressure levels. Another possibil-

ity is that these may be an artifact of the fast

transmittance code (as supplied by JPL for

the AIRS science teams "write test") that we

use to generate brightness temperatures. This

is a matter for further investigation.

A sensitivity analysis of run 150 (discussed

in the next section) is shown in Fig. 4.

This analysis, together with similar results

from other runs using the same channel set,
indicated that channels with wavenumbers

roughly between 750 and 1200 were not be-

ing used by the network. This information,

together with the relatively high error above

the 50mb pressure level suggested changes to

the channel set, which were incorporated in
run 170.

In run 170, the 880 even numbered TIGR

profiles were used for training and the 881 odd

numbered TIGR profiles were used for test-

ing the network, as before. Input to the net

is brightness temperature for 728 AIRS chan-

nels, selected for surface and air temperature

sensitivity, taking into account previous sen-

sitivity analysis. Output is surface tempera-

ture and air temperature at 64 distinct pres-
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TIGR Profiles, Run 150, epoch 1.4e+05. RMS Error by Pressure
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Figure 2: RMS temperature errors for run 150.
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TIGR Profiles, Run 170, epoch 1.2e+05. RMS Error by Pressure
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Figure 3: RMS temperature errors for run 170.
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Run Net Size

150 666 x 108 x 72 x 67

170 728 x 108 x 72 x 65

90 586 x 90 x 60 x 50

Epoch

240,000

160,000

50,000

RMS errors (a)

train test noise

1.22K 1.23K 1.37K

1.02K 1.09K 1.22K

13.20_ 15.0% 15.9%

Table 1: Summary of runs discussed.

sure levels. 1 The network is the same size at

the network for run 150. After 160,000 epochs,

RMS training error is 1.02K, RMS extrapola-

tion error is 1.09K, and RMS extrapolation er-
ror with 0.2K std noise is 1.22K. These results

are shown in Fig. 3. A slight improvement in

noise performance of this network could prob-

ably be realized by further training with noisy

data.

A sensitivity analysis of run 170 is shown

in Fig. 5. Note that the 'flat spot' (the large

group of unused middle channels) is much re-

duced, but that there are still some unused

channels.

Fig. 6 shows some initial results for wa-

ter retrievals. Input to the net is brightness

temperatures for 586 AIRS channels, selected

for both water and temperature sensitivity.

The same set of TIGR profiles were used as

in runs 150 and 170, while the network was

slightly smaller, with 90 transfer functions in ==

the first hidden layer and 60 in the second.

1We switched from 66 to 64 pressure levels to match
conventions used for the AIRS science team "write
test."

After 50,000 epochs, overall error for the first

50 pressure levels (expressed as percentages) is

13.2% training error, 15.0% extrapolation er-

ror, and 15.9% extrapolation error when 0.2K

std noise is added.

As with more traditional methods of inter-

polation, neural networks can both under- and

over-fit. High training error or inability to

converge on the training set is a sign of under-

fitting, while poor performance on new dater

is a sign of over-fitting. The close correspon-

dence between training and extrapolation er-

rors on all the runs, and appropriate smooth-

ness of retrieved profiles, suggest that the size

of our hidden layers is not too large, and that

we are not overfitting. It may be possible to

use larger hidden layers to improve training

and also (though to a lesser degree) extrap-
olative behavior.

6 Sensitivity Analysis

Once a network has been trained we can ob-

tain a measure of its dependency oil the inpul
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Figure 4: Sensitivity plot for run 150.

Figure 5: Sensitivity plot for run 170.
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channel set by computing the Jacobian matrix

of the partial derivatives of outputs with re-

spect to inputs evaluated at a representative

sample of profiles. In particular we have com-

puted numerically by differences the quantity

--2x_2

-V zatvj

where 7 indexes over the set of profiles in the

dataset, N, is the number of profiles in the

dataset, and A is the difference operator. If

Sij is large then on average over the set of all

TIGR profiles frequency channel j has a large

effect on temperature (water) in pressure layer

i, while if it is small then the network has

found little dependence of frequency channel

j on the temperature (water) in pressure level
i.

In the plots of sensitivity analysis Figs. 4

and 5, channels run from left to right, with

the lower wavenumbers to the left. Pressure

levels run from front to back, with the surface

at the back of the plot. The z axis represents

sensitivity (the sum square of partials), aver-

aged across all the training profiles.

For many channels, sensitivity peaks corre-

spond to weighting function peaks. The sen-

sitivity plot looks much more 'noisy' and this

is to be expected. (The sensitivity plot for an

untrained net looks much like uniform noise.)

In effect, the net has discovered its own rep-

resentation for the weighting functions, where

information from groups of channels is used to

retrieve information about a particular pres-

sure level. We conjecture that the 'noisy look-

ing' sensitivity plot is inseparable from the

network's good performance on noisy input.
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7 Conclusions for helpful discussions of this problem.

We have demonstrated an application of back-

propagation neural networks to the retrieval

of accurate atmospheric temperature and wa-

ter profiles, using the hundreds of channels of

spectral information that will be available on

the AIRS instrument. The prohibitive cost of

training such large networks with large train-

ing sets is ameliorated by an effective map-

ping of the algorithm to the parallel architec-

ture of the Maspar MP-1. The neural network

allows us to make effective use of the large

AIRS channel set, especially for better noise

performance. Once the network is obtained it

can be used to obtain very fast retrievals even

with many input channels on modest compu-

tational platforms.

A sensitivity analysis of the network sug-

gests ways we can refine the choice of chan-

nels used by the network. In principle, one

could take the entire AIRS channel set, train

a net for (say) temperature retrievals, perform

a sensitivity analysis on the resultant net, get

a smaller set of temperature sensitive chan-

nels, and use the smaller channel set to train
a second net.

There are a number of directions for further

work. Our present results indicate it is likely

that a somewhat larger net may have errors

below 1K. It may be that simultaneously re-

trieving temperature and water using a large

combined channel set will give even better re-

sults than so far obtained. The retrieval of

other atmospheric parameters, such as Oa, are

promising areas for further investigation, as

are the potential application of neural nets to

cloudy atmospheres.
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